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SUMMARY 

A fragment approach, consisting of a selection of different fragments 
from which the network may be built-up, together with a kinetic scheme giv- 
ing the evolution of such fragments during polymerization and a recursive 
approach for derivation of statistical averages, is used in the analysis of 
the build-up of polymer networks by initiated polyreactions. Gelation con- 
ditions are predicted for two simple cases: the living polymerization of 
a (tetrafunctional) monomer with two polymerizable groups and the poly- 
etherification released by polyamine-polyepoxide addition. When the size of 
the fragments is increased, the solution converges to the exact solution 
given by the kinetic theory. 

INTRODUCTION 

For generation of branched and crosslinked structures, two analytical 
methods are available: (a) the statistical generation from monomer units or 
larger structural units (fragments) and (b) the kinetic method in which the 
process of network build-up closely follows the chemical kinetics (I). It 
was shown (2) that the statistical generation of linear chains always lead 
to the most probable or pseudo most probable distribution. The term pseudo 
most probable has been reserved for a distribution in which the distribu- 
tion of the low molecular weight species is deterministic (determined by 
the kinetics) and the rest of the distribution is of the most probable 
type. The kinetic generation gives different distributions; for instance, 
the Poisson distribution for the case of initiated polymerization with fast 
initiation. The application of the statistical generation to kinetically 
controlled polyfunctional reactions may lead to significant deviations in 
structural parameters. 

However, for a number of complex reactions the infinite set of kinetic 
differential equations may be difficult or impossible to solve. Then, the 
method of momen~is still feasible for getting information on the degree 
-of-polymerization averages and the gel point (3) and the procedure can be 
generalized by using computer algoritms for synthesis of the reactions 
schemes governing the process~formulation of the kinetic differential equa- 
tions and formulation and solution of the set of differential equations for 
the moments (4). This method cannot be at present applied beyond the gel 
point, however. 

Therefore, the fragment method based on statistical generation from 
structural fragments larger than the monomer unit is of importance. This 
method has been successfully used in the formation of phenolic resins (5,6) 
and polyetherification accompanying the polyepoxy-polyamine reaction (7). 

* To whom offprint requests should be sent 
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The distribution of fragments used in the generation is obtained by sol- 
ution of a limited number of kinetic differential equations. It is expected 
that, by increasing the size of the fragment, one should approach the exact 
solution given by the kinetic theory. 

This contribution analyzes the effect of increasing fragment size on 
the gel point conversion in the initiated polymerization of a monomer with 
two polymerizable groups of independent reactivity and in the polyetherifi- 
cation released by the polyepoxy-polyamine addition. The results are com- 
pared with those obtained by the exact solution using the kinetic method 
(2,8). 

FRAGMENT APPROACH TO INITIATED POLYREACTION OF A MONOMER WITH TWO 
FUNCTIONAL GROUPS 

A rigorous calculation of the gel point conversion in the living pol- 
ymerization of a monomer with two polymerizable groups of independent and 
equal reactivity was reported by Dusek and ~omv~rsky (2). The gel point 
depends on the ratio of initiation and propagation rate constants, K=kl/kp, 
and on the ratio of initial concentrations of initiator and monomer, 

R : i0/m O. 
Let us apply the fragment approach to this system using different 

levels of initial information(size of fragments) 

(a) First fragment level 

The following fragments are considered: 
= = (+)~-(-) (middle fragment) FI ~ (unreacted initiator) F4 

F2 =Q (half of an unreacted monomer) F5 (+)~ (end fragment) 
F3 =I- (-)(reacted initiator) 

In order to build up the network, (-) groups are to be joined with 
(+) groups, and segments (issuing from the half monomer) among themselves. 

The kinetic scheme may be written as 

k I 
FI + F2 > F3 + F5 

k 
F5 + F2 P ~ F4 + F5 

from which we get 

F2 = m 0 - (I - I/K)(i 0 -FI) - (i0/K)in(i0/F1) 

F3 = F5 = i 0 - FI 

F4 = m 0 - F2 + FI - i 0 

By defining the conversion 

~M = (m0 - F2)/m 0 

and 
~M = I - (i 0 -F1)/(m 0 -F2) = I - [R- (F1/m0)]/~ M 

Eqs. (3) to (5) may be written as 

~M = (I - I/K)~M(I - ~M ) + (R/K)In(R/K - ~M(I - ~M )) 

F3/m 0 = FS/m 0 = ~M(I - ~M ) 

F4/m 0 = ~M~M 

(i) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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Once the evolution of the fragments in the course of the polymeriz- 
ation is known, the statistical averages may be calculated. One defines: 

Y(+) = average weight hanging from a -- (+) 
Y(-) = average weight hanging from a -- (-) 

W = average weight hanging from a -- 

Y(+) = {F3 M I + F4[M M + Y(+) + W]}/(F3 + F4) (11) 

M I and MMare , respectively, the molecular masses of the initiator and the 
monomer. It must be noticed that, as the probability of joining an F3 is 
taken as F3/(F3 + F4) while that of joining an F4 is F4(F3 + F4), the most 
probable distribution of fragments in the network is implicitly assumed. 
Similarly, 

Y(-) = {F4[M M + Y(-) + W] + F5(M M + W)}/(F4 + F5) (12) 

W = {F2 M M + F4[M M + Y(+) + Y(-)] + F5[M M + Y(+)]}/(F2 + F4 + FS) (13) 

By getting Y(+) from Eq.(11), Y(-) from Eq.(12), replacing them in Eq.(13) 
with the aid of Eqs.(6), (9) and (10), and stating the condition that W 
(and consequently Y(+) and Y(-)) go to infinity, the following gelation 
condition results 

I = ~M(1 + 2~M) (14) 

This is exactly the same condition as that obtained in Ref. 2 using cascade 
generation. 

Once R and K are fixed, the gelation conversion ~M(gel) is obtained 
from the simultaneous solution of Eqs.(8) and (!4). 

It may be of interest to show the generation of this result using the 
theory of branching processes and the same fragment distribution. This 
distribution with respect to the number and type of bonds can be written 
down in the form of probability generating functions (pgf) FOI and FOM for 
the initiator and the (tetrafunctional) monomer, respectively, 

Fol(z) = F1 + F3 z+ (15) 

= [foM(z)]2 = [F2 + F4(~iz+z I + ~MZ+Z_) + F5(~IZ I + ~MZ_)] 2 (16) FOM (z) 

where z is the pgf variable and the subscript denotes the type of group to 
which the bond extends. For example, z+ at F3 in FOI means that the bond 
extends from the (-) group of I to the (+) group of a monomer unit. The 
factors ~M and ~I = I - ~M are probabilities that an (+) group is coupled 
with a monomer unit and I, respectively; ~M = F4/(F4 + FS), F3 = F5. Since 
we are interested only in the gel point, the quantity FOI for the monofunc- 
tional initiator is irrelevant and z I = I in FOM. 

The pgf's for units in generation g>0 are obtained by differentiation. 
F+ and F_ are pgfs for units rooted (on the preceding generation) by their 
(+) or (-) group, respectively. Thus, 

F+(z) = (~FoM/~Z+)N = foM(z) (17) 

F_(z) = (~FoM/~Z_)N = foM(Z)(F4z+ + F5)/(F4 + F5) (18) 

(N is a normalizer), and the gel point conversion is determined by the 
relation 
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1 - F+ + -F+ I 
met ~ -F~ I - F- = 0 (19) 

+ 

where F+ = (aF+(z)/aZ+)z,=z =I and the other symbols have an analogous 
meaning. After substitutzng-the values of derivatives obtained from Eqs. 
(17) and (18) one gets condition (14). 

(b) Second fragment level 

At this level~ we do not allow the middle unit to be joined directly to 
a reacted initiator or to the end fragment of the living chain. So, the 
following fragments are used 

FI = "[3 F5 = (+)-~(-) 

F3 = i-~ F7 
F4= 

In this case, the concentrations up to the dimer are calculated rigorously. 
The kinetic scheme may be then written as 

k I k 
FI + F2 e F3 F4 + F2 P ~ F6 + F7 

k k 
F3 + F2 P > F4 F6 + F2 P p F5 + F6 

By formulating the corresponding kinetic equations and using the Runge- 
-Kutta 4th order method, the concentrations of different fragments in the 
course of polymerization are established. 

The average weight hanging from different linkages are given by: 

Y(+) = {F5[M~I + Y(+) + W] + F7[M M + M I + W]}/(F5 + F7) (20) 

Y(-) = {FS[M M + Y(-) + W] + F612(M M + W)]}/(F5 + F6) (21) 

W = (I/m0){F2 M M + F3(M M + M I) + 2F4(2M M + M I + W) + 

FB[M M + Y(+) + Y(-)] + 2F612M M + W + Y(+)] + F7[M M + M I + Y(-)]} (22) 

where m 0 = F2 + F3 + 2F4 + F5 + 2F6 + F7. 
By substituting Y(+) and Y(-) into W and taking into account that 

F6 = F7, the following gelation condition (leading to W, Y(+), Y(-) ~ 2) 
results 

F2 + F3 - 5F5 - 3F6 - 2(F5)2/F6 = 0 (23) 

Provided that R and K are fixed, Eq.(23) is satisfied for a certain 
a M = (F3 + 2F4 + F5 + 3F6)/m O. The condition is easily calculated from the 
knowledge of the fragments concentration as a function of conversion. 

(c) Third fragment level 

Each new fragment level requires the introduction of two new species. 
In this case, we get 

FI to F4 as in the previous case F7 = ~ ( - )  
F5 = ~ Fg = (+)-~-~--~ 
F6 = ~ F9 = (+)-~-(-) 

Now, the concentrations up to the tetramer are rigorously calculated 
using the scheme 
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k I k 
FI + F2 ) F3 F5 + F2 P 7 F6 

k k 
F3 + F2 P ~ F4 F6 + F2 P ~ F7 + F8 f 

k k 
F4 + F2 P ~ F5 F8 + F2 P 2 F9 + F8 

The concentrations of the different fragments were obtained by solving 
numerically the kinetic equations. 

Following the same procedure as in the previous cases (i.e. calculat- 
ing Y(+), Y(-) and W and noting that F7=FS), the gelatien equation is 
obtained in the form 

F2 + F3 - 3F5 - 8F6 - 15F9 - 2(F9)2/F7 = 0 (24) 

with ~M = (F3 + 2F4 + 2F5 + 4F6 + 5F7 + F9)/m 0 , 
m 0 = F2 + F3 + 2F4 + 3F5 + 4F6 + 2F7 + 3F8 + F9. 

The gel point conversions calculated using the fragment approach with 
increasing fragment level and the exact kinetic solution are given in 
Table I. 

Table I 

Gel point conversion in living polymerization of a monomer with two polym- 
erizable groups of independent and equal reactivity. RS rigorous solution 
(I); FA(i) i-th fragment level approach. E% percent error of the FA(3) 
approximation 

K = kl/k p = 0.01 

R = io/m 0 RS FA(1) FA(2) FA(3) g% 

0.001 0.020 0.015 0.016 0.016 20.0 
0.01 0.046 0 .036  0.037 0,039 15,2 
0.1 0.102 0.081 0.088 0.093 8.8 
0.5 0.177 0.146 0.162 0.172 2.8 

K=0.1 

0.001 0.030 0.022 0.023 0.024 20.0 
0.01 0.083 0.063 0.069 0.074 10.8 
0.1 0.204 0.168 0.189 0.200 2.0 
0.5 0.375 0.324 0.366 0.375 0 

K = I 

0.001 0.032 0.023 0.024 0.025 21.9 
0.01 0.100 0.076 0.085 0.092 8.0 
0.1 0.316 0.257 0.302 0.315 0.3 
0.5 0.707 0.643 0.704 0.707 0 

K = 10 

0.001 0.032 0.023 0.024 0.025 21.9 
0.01 0.105 0.076 0.085 0.092 12.4 
0.1 0.332 0.279 0.324 0.331 0.3 
0.5 0.864 0.809 0.863 0.864 0 



0.08 

POLYETHERIFICATION INDUCED BY POLYAMINE'POLYEPOXIDE ADDITION 

In the reaction of an amino group with epoxy group, aminoalcohols 
containing one or two OH groups are formed. The OH group can further react 
with epoxy groups. In this reaction, OH group is recovered, an ether bond 
is formed. The epoxy-amine reaction is usually much faster than the etheri- 
fication reaction. Thus, polyetherification is initiated by the OH groups 
of the amino alcohol. This reaction has been treated using the fragment (7) 
as well as the exact kinetic (8) methods. The amine-diepoxide adducts 
having 2, I or 0 OH groups (0, I, 2 ether groups), respectively, the middle 
and end epoxy units in polyether chains were used as fragments. The details 
of calculation using both types of approach have already been published 
(Refs. 7 and 8)*. The results are compared in Fig.1 which also shows the 
case when the network is built-up from monomer units only. 
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Figure I. Dependence of the conversion of excess epoxy groups, SETH, at the 
gel point on the initial molar ratio epoxy/amine, rE, for postetherifi- 
cation following the addition of a diepoxide to a diamine. I exact solution, 
2 approximation using fragments composed of one amine and two epoxy units, 
2 approximation using only amine and epoxy units. 

*There is a misprint in Eq.(28) of Ref.8 which should read 

I - [(2 + P~ETH )(3 + 2P~ET H) + P~ETH ]/r E = 0 (see Ref.9) 
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DISCUSSION 

Comparing the gel point conversions calculated for the initiated poly- 
reaction of a monomer with two functional groups, one can see that the 
value obtained by using the fragment method is higher than the exact sol- 
ution. It is so because the fragment method yields a wider distribution of 
chain lengths. However, using the third level of fragmentation, and par- 
ticularly if the average chain length is low (i.0m07~:0. I), the. difference 
becomes small. The difference becomes larger wzth increaszng chain length. 
By further increasing the fragment level, a reasonable approximation can be 
expected for i0/m0~0.01 , but only a slow convergence when the i0/m 0 ratio 
is smaller. 

The case of polyetherification following diamine-diepoxide curing Pig. 
I demonstrates a very close approach to the exact solution by passing from 
monomer units to larger fragments. 

The examples given above show that the results obtained by statistical 
generation of branched and crosslinked structures from fragments always 
converge to the exact solution when the fragment size is increased. However, 
the closeness of approximation depends on the properties of the given 
system, particularly on the reaction mechanism and kinetics. The fragment 
approach utilizes elements of higher-order Markovian statistics and the 
fragment level is in a relation with the order of Markovian statistics. 
While the application of higher order Markovian statistics is relatively 
easy for linear systems, it becomes much more difficult for branched 
systems. The fragment method is less rigorous but easier to apply. 
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